1q^2+3q-18=0

Simple and best practice solution for 1q^2+3q-18=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1q^2+3q-18=0 equation:



1q^2+3q-18=0
We add all the numbers together, and all the variables
q^2+3q-18=0
a = 1; b = 3; c = -18;
Δ = b2-4ac
Δ = 32-4·1·(-18)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*1}=\frac{-12}{2} =-6 $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*1}=\frac{6}{2} =3 $

See similar equations:

| .375*x+3*0.375+x*0.25=10 | | 2x-15=169 | | .375*16+3*0.375+x*0.25=10 | | 10n-7n=18 | | 19.83+81f+19.89=4.2f-19.56 | | .375*16+3*0.375+x*0.25=0 | | 7n+2=10-n | | 2x–1=45 | | 5x+2=x=8 | | 4.5(x–9)=-13.5 | | -2+9k=7k | | f-15=20-6f | | 4x+20+8=6x | | 35=u/5+15 | | F(x)=5^2-4 | | 21x-1=19x+7 | | 34=y/2+11 | | 3x-9=129 | | 10x-8=5x+8=180 | | 7+49=28+p | | 17.5x+11.3=-11.99+15.8x | | 8/x+9=2/x−3 | | 2/x=4/7 | | 19z-19=20+16z | | -20+z=-8z+20+14 | | 1-2u=5 | | -4=10-2x | | -15-12x=-17x | | 242+37c=228 | | 0=a+7a-3a | | 8(-x-4)=5 | | 8x+4-2x=20 |

Equations solver categories